finite $p$-groups and centralizers of non-cyclic abelian subgroups
Authors
abstract
a $p$-group $g$ is called a $mathcal{cac}$-$p$-group if $c_g(h)/h$ is cyclic for every non-cyclic abelian subgroup $h$ in $g$ with $hnleq z(g)$. in this paper, we give a complete classification of finite $mathcal{cac}$-$p$-groups.
similar resources
Finite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
full textOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
full textLarge Abelian Subgroups of Finite p-Groups
It would be interesting to extend this result by allowing B to have nilpotence class 2 instead of necessarily being abelian. This cannot be done if p = 2 (Example 4.2), but perhaps it is possible for p odd. (It was done by the author ([Gor, p.274]; [HB, III, p.21]) for the special case in which p is odd and [B,B] ≤ A.) However, there is an application of Thompson’s Replacement Theorem that can ...
full textFinite groups all of whose proper centralizers are cyclic
A finite group $G$ is called a $CC$-group ($Gin CC$) if the centralizer of each noncentral element of $G$ is cyclic. In this article we determine all finite $CC$-groups.
full textThe number of Fuzzy subgroups of some non-abelian groups
In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.
full textTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyجلد ۴۳، شماره ۱، صفحات ۱۷۱-۱۹۲
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023